首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   85篇
  国内免费   139篇
大气科学   6篇
地球物理   281篇
地质学   233篇
海洋学   77篇
天文学   1篇
综合类   9篇
自然地理   23篇
  2023年   7篇
  2022年   11篇
  2021年   11篇
  2020年   19篇
  2019年   25篇
  2018年   31篇
  2017年   20篇
  2016年   31篇
  2015年   32篇
  2014年   29篇
  2013年   42篇
  2012年   30篇
  2011年   34篇
  2010年   23篇
  2009年   29篇
  2008年   25篇
  2007年   41篇
  2006年   25篇
  2005年   24篇
  2004年   26篇
  2003年   19篇
  2002年   27篇
  2001年   14篇
  2000年   5篇
  1999年   10篇
  1998年   10篇
  1997年   3篇
  1996年   7篇
  1995年   2篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1977年   1篇
排序方式: 共有630条查询结果,搜索用时 15 毫秒
1.
A 1-g model experimental study was conducted to investigate the accumulated rotations and unloading stiffness of bucket foundations in saturated loose sand. One-way horizontal cyclic loading was applied to model bucket foundations with embedment ratios 0.5 and 1.0. Up to 104 cycles of loading were applied at a frequency of 0.2 Hz varying load amplitudes. The accumulated rotation of the bucket foundations increased with the number of cycles and the load amplitudes. Empirical equations were proposed to describe the accumulated rotation of the foundations. The unloading stiffness of foundations increased with the number of cycles but decreased with an increase in load amplitude. The initial unloading stiffness of L/D = 1.0 (L is skirt length; D is foundation diameter) was approximately twice that of L/D = 0.5. Excess pore water pressure difference of 50% was observed between L/D = 0.5 and 1.0. The suction and static capacity of the bucket increased with increase of bucket embedment ratio with a difference of 69.5% and 73.6% respectively between L/D = 0.5 and 1.0.  相似文献   
2.
Abstract

In the coastal area, nearshore and offshore structures have been or will be built in marine soft clay deposits that have experienced long-term cyclic loads. Therefore, the mechanical behavior of marine clay after long-term cyclic loading needs to be investigated. In this research, a series of monotonic and cyclic triaxial tests were carried out to investigate the postcyclic mechanical behavior of the marine soft clay. The postcyclic water pore pressure, shear strength and secant stiffness are discussed by comparing the results with the standard monotonic test (without cyclic loading). It is very interesting that the postcyclic behavior of marine soft clay specimen is similar to the behavior of overconsolidated specimen, that is, the specimen shows apparent overconsolidation behavior after long-term cyclic loading. Then relationship between the overconsolidation ratio and the apparent overconsolidation ratio is established on the basis of the theory of equivalent overconsolidation. Finally, a validation formula is proposed which can predict the postcyclic undrained shear strength of marine soft clay.  相似文献   
3.
采用Loganathan公式研究了盾构隧道下穿管道施工引起的地下管道处土体竖向位移,利用考虑土中剪力传递的Pasternak模型模拟管-土相互作用,运用修正Vlasov模型中的迭代流程计算出Pasternak模型的关键参数——弹性系数k与剪切系数gs。将计算结果与已有文献结果及工程监测数据进行对比,深入分析了迭代求解k、gs值的Pasternak模型与传统模型的计算差异,并进一步研究了土中剪力、管道与隧道的夹角、土体弹性模量及隧道半径的变化对管-土相互作用的影响。研究结果表明:迭代求解的k、gs值能提升Pasternak模型的精确度;土中剪力对管道竖向位移计算值的影响可达15.3%;随着管道与隧道夹角的减小,管道的竖向位移增大、弯矩减小;土体弹性模量与隧道半径的增大均会增加管道的竖向位移和弯矩。  相似文献   
4.
It is widely accepted that ductility design improves the seismic capacity of structures worldwide. Nevertheless, inelastic deformation allows serious damage to occur in structures. Previous studies have shown that a certain level of postyield stiffness may reduce both the peak displacement and residual deformation of a structure. In recent years, several high-strength elastic materials, such as fiber-reinforced polymer (FRP) and high-strength steel bars, have been developed. Application of these materials can easily provide a structure with a much higher and more stable postyield stiffness. Many materials, members, and structures that incorporate both high-strength elastic materials and conventional materials show significant postyield hardening (PYH) behaviors. The significant postyield stiffness of PYH structures can help effectively reduce both peak and residual deformations, providing a choice when designing resilient structures. However, the findings of previous studies of structures with elastic-perfectly plastic (EPP) behavior or small postyield stiffness may not be accurate for PYH structures. The postyield stiffness of a structure must be considered an important primary structural parameter, in addition to initial stiffness, yielding strength, and ductility. In this paper, extensive time history and statistical analyses are carried out for PYH single–degree-of-freedom (SDOF) systems. The mean values and coefficients of variation of the peak displacement and residual deformation are obtained and discussed. A new R-μp-T-α relationship and damage index for PYH structures are proposed. A theoretical model for the calculation of residual deformation is also established. These models provide a basis for developing the appropriate seismic design and performance evaluation procedures for PYH structures.  相似文献   
5.
黄福云  陈汉伦  董锐  单玉麟 《岩土力学》2020,41(5):1625-1634
整体式桥台无伸缩缝桥梁(以下简称整体桥)桩基应设计为柔性桩,以保证较好的抗水平变形能力。但是,我国相关规范中判别柔性桩的算法主要应用于单向水平受荷桩,可否沿用至整体桥桩基还有待验证。为此,根据一种特殊设计的桩身变形测量方法,对3根埋深不同的混凝土模型桩进行了低周水平往复位移下的拟静力试验,研究单桩-土体系的抗震性能和相互作用机制。研究表明,水平往复位移下混凝土桩在埋深为3D~6D(D为桩径)范围内开裂;桩的埋深越大,桩身挠曲程度越大、变形特征点位置也越深、桩-土体系的抗弯刚度也越大、水平极限承载力也越高、抗震性能也越强。研究还表明,桩-土体系进入弹塑性阶段后,柔性桩的水平工作性状将逐渐向刚性桩退化。另外,在判别整体桥桩基的水平工作性状时,我国相关规范中的规定偏不安全。实际工程中,建议以Broms方法进行参考计算。  相似文献   
6.
目前天然橡胶支座(NRB)的性能研究大多未考虑尺寸效应,在前期开展的近海桥梁隔震支座和材料老化时变规律研究的基础上,同时考虑支座直径尺寸变化和老化作用时间的影响对NRB的性能进行研究。首先采用ABAQUS有限元软件对不同直径尺寸NRB的性能进行分析,得到了NRB性能随直径尺寸的变化规律;然后结合前期老化作用对NRB及其橡胶材料性能时变规律的影响研究成果,分析了直径尺寸及老化作用时间共同作用下,NRB性能的变化规律,并通过ABAQUS有限元分析,验证了该变化规律的准确性。结果表明:NRB的水平刚度和竖向刚度均随其直径尺寸的增大呈正比例增大趋势;NRB水平刚度比和竖向刚度比均随老化作用时间的增长呈线性增大趋势;且直径为150mm的NRB在实际环境老化60a后,其水平刚度和竖向刚度的增长幅度分别为:30.8%和16.41%,由此可见老化作用时间对NRB水平刚度的影响较显著,对其竖向刚度的影响较小。研究内容可为隔震桥梁结构中支座缩尺模型试验的相关设计提供参考,并为将实验室缩尺橡胶隔震支座的相关成果较好地应用于实际工程计算及设计中提供依据。  相似文献   
7.
Lateral cyclic load tests were performed on an aluminum model pile in dry sand. Two levels of loading were adopted to represent different service load conditions. The maximum number of loading cycles was 1,000. From the test results, it was found that the even though in the service load condition, the pile response was still affected by cyclic effects and a larger load level would produce more significant influence. In a global point of view, the lateral displacement and maximum moment increased with loading cycles, while the secant stiffness within a cycle decreased with cycles. The cyclic effect was more significant on the lateral displacement than on the moment. In a local point of view, cyclic loading would degrade the equivalent subgrade stiffness for the soil shallower than about seven times diameter. In addition, the secant subgrade stiffness within a cycle increased with loading cycles. Some experimental relationships of lateral pile response and loading cycles were built and compared with those in the literature.  相似文献   
8.
Prehistoric rock art sites are endangered despite conservation efforts. The lack of scientific documentation regarding weathering agents affecting rock art and the absence of specific diagnostic protocols hinder the development of conservation strategies. The aim of this research was to investigate active deterioration processes in a granite petroglyph site located in Mougás (Galicia, NW Spain) by characterizing the granite, conducting a geotechnical study of the outcrop and describing and analysing the main weathering processes. Two main deterioration factors were identified. First, water favours block disjunction at the massif scale and causes pitting and surface erosion at the millimetre scale that affects the readability of the engravings. Second, high temperatures associated with wildfires cause mineral transformations that increase the susceptibility of the rock to weathering. Identifying deterioration factors is a first step in developing appropriate preventive conservation measures, which should aim to reduce rock contact time with water (technically affordable in the short term) and to reduce the probability of wildfire occurrence (technically more complex and possibly with longer‐term results). Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
9.
An analytical approach using a Winkler model is investigated to provide analytical solutions of settlement of a rectangular pile subjected to vertical loads in nonhomogeneous soils. For a vertically loaded pile with a rectangular cross section, the settlement influence factor of a normal pile in nonhomogeneous soils is derived from Mindlin's solution for elastic continuum analysis. For short piles with rectangular and circular cross sections, the modified forms of settlement influence factors of normal piles are produced taking into account the load transfer parameter proposed by Randolph for short circular piles. The modulus of subgrade reaction along a rectangular pile in nonhomogeneous soils is expressed by using the settlement influence factor related to Mindlin's solution to combine the elastic continuum approach with the subgrade‐reaction approach. The relationship between settlement and vertical load for a rectangular pile in nonhomogeneous soils is available in the form of the recurrence equation. The formulation of settlement of soils surrounding a rectangular pile subjected to vertical loads in nonhomogeneous soils is proposed by taking into account Mindlin's solution and both the equivalent thickness and the equivalent elastic modulus for layers in the equivalent elastic method. The difference of settlement between square and circular piles is insignificant, and the settlement of a rectangular pile decreases as the aspect ratio of the rectangular pile cross section increases. The comparison of results calculated by the present method for a rectangular pile in nonhomogeneous soils has shown good agreement with those obtained from the analytical methods and the finite element method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
10.
A model for the stress‐dependent elastic wave velocity response of fractured rock mass is proposed based on experimental evidence of stress‐dependent fracture normal and shear stiffness. Previously proposed models and previous experimental studies on stress‐dependent fracture stiffness have been reviewed to provide a basis for the new model. Most of the existing stress‐dependent elastic wave velocity models are empirical, with model parameters that do not have clear physical meanings. To propose the new model, the rock mass is assumed to have randomly oriented microscopic fractures. In addition, the characteristic length of microfractures is assumed to be sufficiently short compared to the rock mass dimensions. The macroscopic stress‐dependent elastic wave velocity response is assumed to be attributed to the stress dependency of fracture stiffness. The stress‐dependent fracture normal stiffness is defined as a generalized power law function of effective normal stress, which is a modification of the Goodman's model. On the other hand, the stress dependency of fracture shear stiffness is modeled as a linear function of normal stress based on experimental data. Ultrasonic wave velocity responses of a dry core sample of Berea sandstone were tested at effective stresses ranging from 2 to 55 MPa. Visual observation of thin sections obtained from the Berea sandstone confirms that the assumptions made for microstructure of rock mass model are appropriate. It is shown that the model can describe the stress‐dependent ultrasonic wave velocity responses of dry Berea sandstone with a set of reasonable material parameter values. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号